Extensions of the Borsuk-Ulam Theorem
نویسندگان
چکیده
Extensions of the Borsuk-Ulam Theorem by Timothy Prescott
منابع مشابه
Digital Borsuk-Ulam theorem
The aim of this paper is to compute a simplicial cohomology group of some specific digital images. Then we define ringand algebra structures of a digital cohomology with the cup product. Finally, we prove a special case of the Borsuk-Ulam theorem fordigital images.
متن کاملGeneralized Kneser Coloring Theorems with Combinatorial Proofs
The Kneser conjecture (1955) was proved by Lovász (1978) using the Borsuk-Ulam theorem; all subsequent proofs, extensions and generalizations also relied on Algebraic Topology results, namely the Borsuk-Ulam theorem and its extensions. Only in 2000, Matoušek provided the first combinatorial proof of the Kneser conjecture. Here we provide a hypergraph coloring theorem, with a combinatorial proof...
متن کاملA Borsuk-Ulam Equivalent that Directly Implies Sperner's Lemma
We show that Fan’s 1952 lemma on labelled triangulations of the n-sphere with n + 1 labels is equivalent to the Borsuk–Ulam theorem. Moreover, unlike other Borsuk–Ulam equivalents, we show that this lemma directly implies Sperner’s Lemma, so this proof may be regarded as a combinatorial version of the fact that the Borsuk–Ulam theorem implies the Brouwer fixed-point theorem, or that the Lustern...
متن کاملCombinatorial and Algorithmic Applications of the Borsuk-Ulam Theorem
The Borsuk-Ulam theorem states that if f : S → R is a continuous mapping from the unit sphere in R into R, there is a point x ∈ S where f(x) = f(−x); i.e., some pair of antipodal points has the same image. The recent book of Matoušek [21] is devoted to explaining this theorem, its background, and some of its many consequences in algebraic topology, algebraic geometry, and combinatorics. Borsuk-...
متن کاملExtensions of Sperner and Tucker's lemma for manifolds
The Sperner and Tucker lemmas are combinatorial analogous of the Brouwer and Borsuk Ulam theorems with many useful applications. These classic lemmas are concerning labellings of triangulated discs and spheres. In this paper we show that discs and spheres can be substituted by large classes of manifolds with or without boundary.
متن کامل